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Abstract

A global three-dimensional ozone data assimilation system has been developed at the Data

Assimilation OÆce of the NASA/Goddard Space Flight Center. The TOMS total ozone
and the SBUV or SBUV/2 partial ozone pro�le data are assimilated into an ozone transport

model using the global Physical-space Statistical Analysis Scheme (PSAS). This system
became operational in December 1999.

A detailed description of the statistical analysis scheme, and in particular, the forecast and
observation error covariance models is given. A new global anisotropic horizontal forecast

error correlation model accounts for a varying distribution of observations with latitude.
Correlations are largest in the zonal direction in the tropics where data is sparse. Forecast

error variance model is proportional to the ozone �eld. The forecast error covariance param-
eters were determined by maximum likelihood estimation. The error covariance models are

validated using �
2 statistics.

The analyzed ozone �elds in the winter 1992 are validated against independent observations

from ozone sondes and HALOE. There is better than 10% agreement between mean HALOE

and analysis �elds between 70 and 0.2 hPa. The global root-mean-square (RMS) di�erence
between TOMS observed and forecast values is less than 4%. The global RMS di�erence

between SBUV observed and analyzed ozone between 50 and 3 hPa is less than 15%.

1additional aÆliation: General Sciences Corporation, Beltsville, Maryland
2additional aÆliation: Joint Center for Earth Systems Technology, University of Maryland Baltimore

County, Baltimore, Maryland
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1 Introduction

Ozone observations are obtained from a number of instruments with di�erent resolutions and

error characteristics. Pro�le information is available from a sparse network of ozone sondes

and satellite instruments with a limited spatial coverage: nadir viewing only instruments
(e.g. Solar Backscatter Ultraviolet), occultation limb sounders (e.g. Halogen Occultation

Experiment), or limb emission sounders (e.g. Microwave Limb Sounder). More complete

horizontal coverage is available from satellite instruments measuring total column ozone
ozone (e.g. Total Ozone Mapping Spectrometer), which provides nearly global coverage

every day. With these satellite measurements mean ozone �elds are routinely produced for

geophysical applications of both atmospheric chemistry and transport. In addition, perhaps

with more precision than any geophysical parameter, these data have been used to identify

signi�cant trends in the mean amount of atmospheric ozone.

There are increasing demands on the ozone observations in a wide variety of applications,
which stress the capabilities of the current observing system. Global, synoptic estimates

of three-dimensional ozone �elds have potential applications ranging from instrument cal-
ibration, to estimates of tropospheric ozone, to improvements of weather forecasts. One
strategy for �lling in the spatial and temporal gaps in the observations is to assimilate the

observations into a predictive model. Data assimilation [9, 6] provides a framework for com-

bining the available observational ozone data and their error characteristics with the ozone
background �eld and its error characteristics to obtain the best estimate of the true ozone
�eld.

Data assimilation has been used successfully in the analysis of meteorological data and has

been central in improved weather forecasting through increasingly more optimal data usage

[15]. Recently, the successes in weather forecasting have motivated increased interest is using
assimilated data products for climate and chemistry transport applications [24, 12]. Now,

there is a lot of interest in applying similar techniques to analysis of constituent �elds. Under
the assumption of adiabatic transport on isentropic surfaces Austin [1] completed a study to
determine feasibility of constituent data assimilation into a chemistry and transport model

in the stratosphere using a simple analysis scheme. Lyster et al. [21] implemented a Kalman
�lter for the assimilation of long-lived chemical constituents on isentropic surfaces. M�enard

[23] compared a Kalman �lter with suboptimal assimilation techniques including statistical
interpolation for the assimilation of constituent data on isentropic surfaces. Kondratyev et

al. [17] assimilated simulated satellite observations into a two-dimensional transport and

photochemistry model and compared the errors in ozone analyses and forecasts for di�er-

ent spatial resolution, frequency and type of observations. An assimilation system for total
column ozone using a two-dimensional advection model on a single pressure surface and the

single correction method was developed by Levelt et al. [18]. Khattatov et al. [16] assim-

ilated measurements of photochemically active species into trajectory and photochemical
box models using the variational technique and the extended Kalman �lter and provided

estimates of unobserved constituents.
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The �rst three-dimensional ozone assimilation system was developed by Grainger et al. [14].

In this system observations are analyzed using statistical interpolation and the forecast

model is simply persistence, i.e. the forecast �elds are identical to the previous analyzed

�elds. Levelt et al. [19] assimilated ozone observations into a three-dimensional chemistry

and transport model using statistical interpolation on each pressure level independently.

The Goddard Earth Observing System (GEOS) ozone Data Assimilation System (DAS),

presented in this paper, is the �rst global three-dimensional system with an ozone trans-

port forecast model and a global physical space based statistical analysis scheme. Obser-

vations from two instruments are assimilated: total ozone measured by the Total Ozone

Mapping Spectrometer (TOMS) and partial ozone pro�les measured by the Solar Backscat-
ter Ultra Violet (SBUV) or SBUV/2 instrument. This system was developed in the Data

Assimilation OÆce (DAO) of the NASA/Goddard Space Flight Center primarily to provide

near real time three-dimensional global ozone data to satellite instrument teams, e.g. for
Moderate-Resolution Imaging Spectrometer (MODIS) and Multi-angle Imaging Spectrora-

diometer (MISR) instruments on board NASA's Terra satellite who need ozone pro�le and/or
total ozone data as an input for their retrieval algorithms.

The GEOS ozone DAS is shown schematically in Fig. 1. In one assimilation cycle an ozone
analysis from the previous assimilation cycle is advected using an o�-line transport (forecast)

model driven by assimilated winds from the meteorological GEOS-DAS. The time step of the

transport model is 15 minutes, and the observations are introduced to the model after every
transport time step. The model forecast and observations are combined in the statistical

analysis according to speci�cation of their respective error statistics. Another assimilation
cycle is started from the resulting analyzed ozone �eld. Additional products of the statistical
analysis are the observed-minus-forecast residuals and analysis increments. These quantities

can be used for evaluate the performance of the system and the quality of its components.

This paper will concentrate on the description of the techniques used to represent the error
covariances of the both the forecast model and the observations. In the design of a data
assimilation system the speci�cation of error covariances is of great importance, as they

determine the relative weights given to the forecast and observations when they are com-
bined to form the analysis �eld. Speci�cation of the error covariances and their temporal

evolution from �rst principles remains beyond our computational capabilities. Therefore,
much of the e�ort in building a data assimilation system is spent in modeling of the error
covariance functions. For example, in the ozone assimilation all the observations are mea-

sured by instruments on board polar orbiting satellites following a regular observing pattern,

but with nonuniform spatial distribution. The distribution of observations determines the

correlations; they fall of more quickly in the directions and regions of dense observational

coverage. A forecast error correlation function having this property is, therefore, constructed
and implemented in the ozone system. Another problem is choosing a simple model for the

forecast error variance that works well at all model levels. This is challenging for the ozone

�eld because of the high variability (by more than 2 orders of magnitude) of the �eld in

vertical.
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The major components, presented in Fig. 1, of the GEOS ozone DAS are described in detail

in the following sections: the forecast model in section 2, the observing system and output

data in section 3, and the statistical analysis scheme in section 4. The forecast and observa-

tion error covariance models are described in sections 4.1 and 4.2, respectively. Results from

the validation of the ozone system are given in section 5. They include validation against

observations from independent sources and various statistics of the di�erences between ob-

served and forecast values of the ozone �eld. Finally, a summary and conclusions are given
in section 6.

2 Forecast model

The forecast model in the ozone assimilation system is the transport model developed by

Lin and Rood [20] with a 
ux-form semi-Lagrangian advection scheme. This model solves

the constituent advection equation

@�

@t
+ v � r� = 0 (1)

where � is the ozone mixing ratio and v is the wind, using the time step of 15 minutes.

The ozone �eld is discretized in 2Æ latitude by 2:5Æ longitude horizontal resolution and on
29 hybrid levels. The uppermost 20 levels are constant pressure levels with the following
pressures: 150.34, 131.24, 114.85, 99.74, 84.20, 67.70, 52.82, 40.63, 31.07, 24.01, 18.65, 14.17,
10.14, 7.05, 4.92, 3.39, 2.16, 1.22, 0.6, and 0.2 hPa, denoted by p10; p11; : : : ; p29, respectively.

The lowest 9 levels are given by

pk = pint + �k(ps � pint); for k = 1; 2; :::; 9 (2)

where ps is the surface pressure, pint = 161:4637 hPa is the interface pressure between � and
pressure vertical coordinates and �1 = 0:844, �2 = 0:645, �3 = 0:52, �4 = 0:397, �5 = 0:272,

�6 = 0:17, �7 = 0:102, �8 = 0:052, and �9 = 0:015. The approximate pressure on these

levels (assuming surface pressure of 1000 hPa) are 868.82, 702.00, 597.72, 494.50, 389.91,
303.63, 247.04, 205.07, and 173.63 hPa. The assimilated wind and surface pressure �elds

from the GEOS-DAS are used to drive the transport. The wind �elds were mapped from
the 70 model �-levels of the GEOS-DAS to the 29 hybrid levels of the ozone system using an

algorithm that preserves the vertical integral of the horizontal mass 
ux (S.-J. Lin, personal

communication).

In the current ozone assimilation system the chemical source and sink terms are not explicitly
modeled. This decision was based on experiments using parameterized chemistry as in [25].

The known bias between the source and sink terms and the observations, especially near 40

km altitude, was found to be substantial on the time scale of the data insertion. Exclusion of

the chemical terms performed better because the constant con
ict between the observations
and the chemical model was eliminated. E�ectively, since the time interval between the

introduction of the observations to the system is small, the observations themselves are
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acting as the source and sink terms. A notable shortcoming of neglecting the chemical terms

is in the ozone hole region and the troposphere. However, since the initial applications of

the system focus on use of synoptic maps of the total column, and the variability of the total

column is dominated by advective processes, the exclusion of the chemical terms is not a

critical issue. More rigorous and accurate inclusion of chemical processes will be required

for future applications.

3 Observations and output data

Two types of ozone observations are assimilated in the GEOS ozone DAS: total column

ozone and stratospheric ozone pro�les. The total column measurements provide extensive
horizontal coverage, and are dominated by processes close to the tropopause. Observations of

middle and upper stratospheric ozone pro�les are necessary to produce realistic assimilated

stratospheric pro�les, especially in the regions of active photochemistry in the upper strato-
sphere and in the middle to lower stratosphere under ozone hole conditions. Practically, the
mean amount of ozone is provided by the column measurements, with the vertical pro�le
information, in concert with model information, �ne tuning the three-dimensional structure.

The Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter Ultra Violet (SBUV)
instruments were chosen to provide total ozone and stratospheric pro�le observations, respec-

tively, for the following reasons. Both instruments have been operating for 20 years and there

are plans to 
y such instruments in the future (SBUV/2 on NOAA-L and QuikTOMS). For
our near-real time system it is important that the ozone observations are available within
24 hours of the measurements. Both instruments measure ozone based on the portion of
the ultraviolet (UV) sunlight scattered on air particles, aerosols, cloud particles and re-


ected from the Earth's surface and provide regular coverage of the sunlit portion of the
Earth's atmosphere. Compared with ozone measurements based on infrared emission, these
measurements are relatively insensitive to atmospheric temperature and humidity, surface

temperature, ice and snow cover. However, ozone measured by TOMS and SBUV may be
inaccurate when large amounts of SO2 or aerosols are present in the atmosphere, for ex-

ample after major volcanic eruptions. Ozone observations from both instruments have been
validated in a number of studies. For further information see [25] and references therein.

The validation period used here is winter 1992, one of the standard time periods used in
the Data Assimilation OÆce meteorological validation plan. This period overlaps with the

EASOE (European Arctic Stratospheric Ozone Experiment; see Geophys. Res. Lett., spe-
cial issue, vol. 21, no. 13, 1994) measurement campaign during which additional ozone

sondes were launched. The ozone sondes provide independent measurements for validation

of lower stratospheric and tropospheric ozone pro�les. The presence of an aerosol layer in the
stratosphere during winter 1992, following the eruption of Mt. Pinatubo in June 1991 allows

investigations of the e�ect of the aerosols on the ozone �eld and satellite ozone observations.

The assimilated observations for this period are the TOMS data from Nimbus 7 and the
SBUV/2 data from NOAA-11.
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j pressure at the bottom pressure at the top �SBUV (j)

of the layer pb [hPa] of the layer pt [hPa]

1 1013.25 253.31 0.247

2 253.31 126.66 0.325

3 126.66 63.33 0.165

4 63.33 31.66 0.095

5 31.66 15.83 0.082

6 15.83 7.92 0.054

7 7.92 3.96 0.039

8 3.96 1.98 0.058

9 1.98 0.99 0.101

10 0.99 0.49 0.137

11 0.49 0.25 0.229

12 0.25 0 0.394

Table 1: SBUV ozone pro�le information is reported in 12 Umkehr layers. The pressure at

the boundaries of each layer and the coeÆcients used to model observation error variance
for SBUV observations in each layer are given in this table.

The TOMS total ozone level 2 data, version 7 [22] with the quality 
ag 0 are used. The
TOMS is a scanning instrument with the resolution from about 50�50 km at nadir to about
50� 190 km at the largest scan angle. As this resolution is higher than that of the analysis
grid, the TOMS data are averaged onto this grid prior to the assimilation. Only averages

based on a minimum number of observations are used. This minimum number varies with
the cosine of latitude from a value of 3 at the pole to 11 at the equator.

The SBUV/2 partial column ozone data in Umkehr layers 3-12 are assimilated. The level 2,

version 6 reprocessed [3] data, with quality 
ags 0 (good pro�le) and 1 (high optical path
pro�le), are used. In the earlier version of the system [25] only the data with quality 
ag 0

were assimilated. However, data in an almost 20 degrees wide latitude band near the polar

night region carries the quality 
ag 1 because of the high solar zenith angle. Without the

high latitude SBUV data the quality of analysis su�ers signi�cantly.

In Table 1 Umkehr layer indices, layer boundaries in hPa, and observation error standard de-
viation parameters used for the speci�cations of observation errors of SBUV data (described

in the section 4.2 below) are given.

The analyzed ozone �led is output every six hours with horizontal resolution of 2Æ in latitude

and 2:5Æ in longitude. Prior to saving the analyzed ozone is interpolated from the hybrid

levels onto 29 output pressure levels (850, 700, 600, 500, 400, 300, 250, 200, 170, 150, 130,

115, 100, 85, 70, 50, 40, 30, 25, 20, 15, 10, 7, 5, 3, 2, 1, 0.5, and 0.2 hPa).
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4 Statistical analysis scheme

The analysis scheme implemented in the GEOS ozone DAS is the Physical-Space Statistical

Analysis System (PSAS) [7]. The statistical analysis is done after every model time step

of 15 minutes. Each analysis uses the TOMS and SBUV observations measured within 7.5
minutes before or after the analysis time. Denote the number of observations by p (p � 500)

and the number of grid points by n (n = (144� 89+2)� 29 = 371722). Denote the p-vector

of observations by wo, the n-vectors containing the values of the background (forecast) �eld
by wf , the true (unknown) �eld by wt and the analyzed �eld by wa. The forecast error is

�
f = wf �wt

; (3)

and the observation error is

�
o = wo �Hwt

; (4)

where H is the p� n matrix of the linear observation operator mapping the model variables
on model grid to the observation variables at the observation locations. The forecast error

covariance matrix is de�ned by
P
f = h�f (�f)T i; (5)

and the observation error covariance matrix is de�ned by

R = h�o (�o)T i; (6)

where < � > denotes the expectation operator. The analysis consists of solving3 the innova-

tion equation for vector x

(HP
f
H

T +R)x = wo �Hwf
; (7)

and obtaining the analyzed state wa using the following equation

wa = wf + P
f
H

Tx: (8)

The vector wo � Hwf on the right hand side of the eq. (7) is called observed-minus-

forecast residual. Under the assumptions that �
f and �

o are Gaussian distributed with

mean 0, uncorrelated with wt and with each other, wa is the optimal estimate of wt by

three common optimality criteria: minimum variance, maximum likelihood and best linear

unbiased estimate (see [6]).

In the sections 4.1 - 4.3 the models used to construct each of the matrices in equations (7)

and (8) are given.

3For positive de�nite sparse matrices (like HP fHT+R in the ozone system) the preconditioned conjugate

gradient method [27] is applicable and eÆcient. The iteration of this semi-direct method is terminated after

obtaining an approximate solution ex for which the Euclidean 2-norm of the residual (HP fHT +R) ex�wo+

Hwf is less than 10�7 or after p iterations. The preconditioning matrix is a diagonal matrix whose diagonal

is equal to the diagonal of HP fHT +R.
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4.1 Forecast error covariance model

The forecast error covariance matrix P
f is de�ned in the eq. (5), and could in principle be

obtained from Kalman �lter equations. It is, however, modeled using a �xed forecast error

correlation function and an approximation of the forecast error variance evolution. The
reasons for the use of a simpli�ed model are twofold: one is the problem of identi�ability

of all the parameters needed to fully specify the evolution of forecast error covariances [10];

the other is the prohibitive computational requirement for the evolution of forecast error

covariances using Kalman �lter equations.

The forecast model space in the ozone system is a spherical annulus parameterized by lati-

tude, longitude and pressure with maximum pressure ps on the surface of the inner sphere,
and minimum pressure of 0.1 hPa on the surface of the outer sphere. The model grid points

are indexed by the elements of the set A given by

A =
n
(a1; a2; a3) : a1 2 f�45;�44; : : : ; 45g;

a2 2 f0; 1; : : : ; 143g; a3 2 f1; 2; : : : ; 29g
o
:

The model grid point qa with the index a = (a1; a2; a3) has latitude 2a1 degrees, longitude
2:5a2 degrees and belongs to the model level a3 with pressure pa3 (as given in and above eq.

(2)). Denote by h(a) = (a1; a2; 1) and by v(a) = (0; 0; a3). The point qh(a) has the same
latitude and longitude as qa, but it belongs to the inner sphere with the Earth's radius with

pressure p1. The point qv(a) has the same pressure pa3 as qa, but its latitude and longitude

are equal to 0Æ.

The forecast error covariance model used here is based on that for multilevel univariate
covariances presented in [8]. The matrix P f is a grid evaluation of a forecast error covariance
function of the form

P
f
ab = �

f
a�

f
b f(qh(a);qh(b))g(qv(a);qv(b)); (9)

where the forecast error standard deviations �f , the horizontal f and the vertical g correlation
functions are speci�ed in the sections 4.1.1, 4.1.2 and 4.1.3 respectively. Given any �

f that

is nonnegative for every a 2 A and functions f and g that are correlation functions on R3

the matrix P
f is positive semide�nite and thus a valid covariance matrix 4.

4.1.1 Forecast error variance

The dynamics of the forecast error variance (�f)2 in the time interval between two consecutive
analysis times tk and tk+1 is given by the modi�ed advection equation [5]

@(�f)2

@t
+ v � r(�f)2 = (�m)2 (10)

4A product of two correlation functions is a correlation function for the following reason. For every �nite

grid the matrix formed by grid evaluation of the product of functions is equal to the Hadamard product of

positive semide�nite matrices (grid evaluations of the factors) and thus, it is positive semide�nite.
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where (�m)2 is the model error variance and v is the wind. The initial condition is

(�f)2jt=t+
k

= (�a)2jt=t+
k

where (�a)2 is the analysis error variance and the evaluation of functions at t+k represents their

values immediately after the analysis at time tk. If the growth of the forecast error variance

due to model error and the reduction of forecast error variance due to the analysis are both

neglected, i. e. (�m)2 = 0 and (�f)2jt=t+
k

= (�f)2jt=t�
k

, the forecast error variance satis�es

the constituent advection equation (1). Two readily available solutions of this equation are

the following

(�f)2 = �f w
f
; (11)

�
f = �f w

f
; (12)

with parameters �f and �f . Better ozone pro�les in comparison with SBUV, Halogen Oc-
cultation Experiment (HALOE) [4] and ozone sonde measurements were obtained using the
model in eq. (11) where forecast error variance is proportional to the forecast ozone �eld.
In particular, the mixing ratio peak in the pro�le obtained with the model in eq. (12) was

at lower altitude, higher in magnitude and the gradient in vertical direction near the peak
was higher in magnitude than that of pro�le measurements. Thus, we use model in eq. (11)
with parameter �f = 8:1 � 10�4 ppmv. This value of �f was obtained by experimentation.
Maximum likelihood estimation [11] indicates that �f varies with latitude: larger values are
at higher latitudes, especially in the dynamically active winter hemisphere.

Further evidence in support of the forecast error variance model proportional to the ozone

�eld as in eq. (11) comes from the following comparison of independent ozone measurements
from HALOE and ozone sondes with the analyzed ozone. For given time period and a model

level, let �hi , for i = 1; : : : ; N denote all the HALOE measurements. Each �
h
i is interpolated

from nearest two HALOE measurements above and below this level. Denote by �ai the value
of ozone analysis at the nearest analysis grid point in time and space to �hi , for i = 1; : : : ; N .

The ratio � of the mean-square di�erence between HALOE measurements and analysis with
the mean of HALOE measurements,

� =

PN
i=1(�

h
i � �

a
i )

2PN
i=1 �

h
i

;

is shown in Fig. 2. This ratio � increases signi�cantly only around the stratopause where

a larger error is likely in both HALOE [4] and analysis, at the top model level of 0.1 hPa
where it is likely due to the analysis error, and below 70 hPa where number and quality of
HALOE observations decreases. The di�erence between HALOE measurements and analysis

includes HALOE observation error, analysis error and the error from collocating HALOE

observations with the nearest analysis pro�le in space and time. The ratio formed like �, but
for ozone sonde observations, also shown in Fig. 2, increases signi�cantly around tropopause

and above 20 hPa where the number and the quality of sonde measurements decreases. These

are the indications that the future forecast error variance models should describe larger errors

around tropopause and stratopause.
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4.1.2 Horizontal forecast error correlation function

The function f in the eq. (9) is chosen to be an anisotropic correlation function obtained

by composing the component-wise application of a one-to-one mapping and an isotropic

correlation function. For our choice of the one-to-one mapping, the e�ect of the composition
is that the length scales for f in zonal and meridional directions on the sphere di�er, and

they also change with the latitudes of points. The length scale of f is the longest in the

zonal direction at the equator.

Lemma 1 Let � : R3 ! R
3
be any mapping. Let � : R3 � R3 ! R be any correlation

function on R3
. The function f : R3 �R3 ! R given by

f(x;y) = �(� (x); � (y))

is a correlation function.
5
If � is one-to-one and the grid evaluation of � is a positive de�nite

matrix for every �nite grid of distinct points, then every grid evaluation of f on a �nite grid

of distinct points is a positive de�nite matrix.
6

The horizontal forecast error correlation function f is given by Lemma 1 with � and �

speci�ed as follows. The function � is the second order autoregressive (SOAR) correlation

function

�(qa;qb) = (1 + jjqa � qbjj=L) exp(�jjqa � qbjj=L); (13)

with L = 385 km and jj � jj denoting the Euclidean distance in R3.

The mapping � on R3 is given in Cartesian coordinates by

� (x; y; z) = (l(z)x; l(z)y; z) (14)

where

l(z) =

8><>:
(z=(z + s))1=2 for s

2
� z � s;

s=(2(s2 � z
2)1=2) for � s

2
� z � s

2
;

(z=(z � s))1=2 for �s � z � � s
2
;

(15)

and s = jj(x; y; z)jj. This mapping contracts a sphere centered at the origin towards the axis
through its poles given by the equation x = y = 0 as shown in Fig. 2. The contraction

is the strongest at the equator (z = 0) where the contraction factor l(z) is the smallest.

Consequently, the length scale for f in the zonal direction at the equator is the largest. The
image of the Earth's surface (sphere with radius s = 6371 km) is a surface consisting of the

5Given any �nite grid of n points fq
1
;q

2
; : : : ;qng the matrix obtained by evaluating f on this grid is

equal to the matrix obtained by evaluating � on the grid f� (q
1
); � (q

2
); : : : ; � (qn)g, and thus it is positive

semide�nite.
6The fact that � is one-to-one guarantees that a every grid of n distinct points is mapped onto a grid of

n distinct points.
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union of a �nite cylinder and two hemispheres given by

x
2 + y

2 +
�
z �

s

2

�2
=

s
2

4
for

s

2
� z � s; (16)

x
2 + y

2 =
s
2

4
for �

s

2
� z �

s

2
; (17)

x
2 + y

2 +
�
z +

s

2

�2
=

s
2

4
for �s � z � �

s

2
: (18)

Anisotropic forecast error correlations with longer length scale in the longitudinal than merid-

ional directions, and longer in the tropics than at high latitudes were expected for the fol-

lowing reasons. Due to the observing geometry of the TOMS and the SBUV instruments

there are more observations per unit area of the Earth's surface at higher latitudes than in

the tropics. For example, the SBUV instrument measures at nadir points only. The distance
of the neighboring observations along the orbit (roughly meridional direction) is about 200
km. The distance between neighboring observations in longitudinal direction (on two sub-

sequent orbits) varies from about 400 km at high latitudes to about 2800 km in the tropics.

The TOMS observations provide almost global coverage in one day. However, frequency of
observations per unit area varies with latitude. A region in the tropics is observed once per
day. At high latitudes subsequent orbits overlap. Thus, a region at high latitudes is observed

several times a day. This distribution of SBUV and TOMS observations is expected to result
in longer analysis and forecast error length scales in the zonal direction in the tropics (data
sparse direction and region) than in the meridional direction in the tropics and any direction

at high latitudes.

Further support for the anisotropy in correlations given by f comes from the following
experiment. According to Kalman �lter equations the forecast error covariance matrix at
time tk is

P
f
k = Ak�1P

a
k�1A

T
k�1 +Qk�1;

where P
a
k�1 is the analysis error covariance matrix at the preceding time tk�1, Ak�1 is the

matrix specifying the action of the forecast model between times tk�1 and tk, and Qk�1 is
the model error covariance matrix for the time interval between tk�1 and tk. The relative

contribution of analysis and model error terms to the forecast error covariances was discussed
by Cohn [5]. Initially, the analysis term dominates. The contribution of the model error
term increases with increasing length of the interval between tk�1 and tk. The model error is

particularly important in the limiting case when ozone is simulated by integrating forecast

model for a long time without assimilating any observations. In contrast, the analysis error

term largely determines the forecast error covariances when observations are assimilated

frequently. Recall that in the ozone system observations are assimilated every 15 minutes.

The anisotropy in forecast error covariances in the ozone system is expected to be largely
determined by the anisotropy in analysis error covariances. Thus, we performed a simpli�ed

experiment in which horizontal distribution of observations simulates that of the SBUV
observations. The analysis error correlations were computed using the Kalman �lter equation

P
a = (I � P

f
H

T (HP
f
H

T +R)�1H)P f
;
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where both forecast and observation error variances were spatially constant, observation

errors were uncorrelated, and forecast error correlations were modeled using an isotropic

function. The analysis error correlation length was found to be the largest in the longitudinal

direction in the tropics. The degree of anisotropy in the analysis error correlations was found

to increase with decreasing observation error variance.

Finally, maximum likelihood estimation [11] of the forecast error length scale was done. The

realizations of the observed-minus forecast residuals (right hand side of the eq. (7)) in the

ozone system were used. The forecast error length scale was estimated for di�erent latitude

regions and for longitudinal and latitudinal directions. These estimates of forecast error

length scale were found to vary with latitude and direction similarly to the way that length
scale of f varies with latitude and direction.

4.1.3 Vertical forecast error correlation function

The vertical correlation function g is constructed using Lemma 1,

g(qv(a);qv(b)) = �((ln(pa3 + p0)� ln(pb3 + p0))=c): (19)

The function � depending on an additional parameter e is a member of the family of com-
pactly supported correlation functions constructed by Gaspari et al. [13] and it is given in

the Appendix. The parameter values p0 = 1:3, c = 0:5 ln 2:4, and e = �1:4 are static, deter-
mined in o�ine calculations. For the purpose of determining their values it is assumed that
the forecast error is proportional to the change in the ozone �eld due to the forecast step,

i.e. the ozone transport. Thus, the vertical correlations of the forecast error are identical to
the vertical correlations of the change to the ozone �eld due to the transport. The change
to the ozone �eld by the transport, accumulated over 24 hours, in each of the model pro�les

is treated as one element of the sample. The sample correlation matrix C is constructed,

and the parameters e, p0 and c � 0:5 ln 2:4 were chosen so that the grid evaluation of g
approximates C. The value of c = 0:5 ln 2:4 guarantees that the correlation coeÆcient for
any pair of points on our model grid whose level indices di�er by six or more is zero.

Computational savings in the PSAS algorithm can be obtained by enforcing the sparsity of

the forecast error covariance matrix P
f . One way to achieve this is through the choice of a

vertical forecast error correlation function. For a function that is equal to zero for pairs of

model grid points whose vertical separation exceeds 5 model levels the matrix P f is less than
33% full. Five such correlation functions were tested: the function g, uncorrelated (i.e. 1 for

zero separation, 0 otherwise), function falling o� linearly to 0 at separation of 6 model levels

and equal to 0 for separation of 6 or more levels, compactly supported correlation functions
from [13] of two di�erent vertical coordinates: the logarithm of the pressure and the average

potential temperature. Among these candidate functions, g provided the closest �t to the
sample correlation matrix C and its use resulted in the analyzed ozone pro�les closest to the

SBUV and Halogen Occultation Experiment (HALOE) measurements.
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4.2 Observation error covariance model

The TOMS observation errors are assumed to be uncorrelated, both among themselves and

with respect to SBUV observation errors. The SBUV observation errors are assumed to be

correlated in the vertical.

The block of the observation error covariance matrixR corresponding to TOMS observations

is therefore diagonal:

Ri j =

(
(�o(i))2 for i = j

0 otherwise;
(20)

Recall that TOMS observations are averaged onto the forecast model grid to form super-
observations. Observation error variance (�o(i))2 for i

th super-observation created from

TOMS data is modeled by

(�o(i))2 = (�TOMSw
o(i))2 + (�rep(i))2 (21)

where �TOMS = 0:015 and �
rep(i) is the sample error standard deviation of the TOMS

observations averaged to form the i
th super-observation. The quantity �

rep(i) is used to
model representativeness error [6] standard deviation for ith TOMS super-observation.

Observation error variance (�o(j))2 for jth SBUV observation is modeled by

(�o(j))2 = (�SBUV (uj)w
o(j))2; (22)

where uj is the index of the Umkehr layer corresponding to the observation wo(j) and
parameters �SBUV (uj) are given in Table 1.

The matrix of correlations of SBUV errors in Umkehr layers 3 to 12 is modeled by a symmetric
matrix whose lower left triangle is:26666666666666666664

1

:125 1

:101 :363 1
:042 :040 :501 1

:059 :011 :196 :414 1

:214 :068 :120 :088 :305 1
:003 �:049 �:187 �:122 �:061 :438 1

�:027 �:155 �:097 �:032 :031 :055 :363 1
:218 :040 :197 :172 :035 :150 :009 :502 1

�:047 �:177 �:218 �:084 :032 �:015 :225 :348 :125 1

37777777777777777775

(23)

The parameters in the SBUV error covariance model were determined using SBUV observed-

minus-forecast (O-F) values from an earlier assimilation experiment. Under the assumption

of uncorrelated observation and forecast errors, the covariance matrix of observed-minus-
forecast residuals is the sum of the observation error covariance matrixR and HP

f
H

T where
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H is the matrix of the linear operator mapping model ozone mixing ratio to partial column

ozone in Umkehr layers. For the purpose of determining SBUV observation error statistics

the forecast error correlation matrix is assumed to have multivariate Gaussian distribution

with mean 0, variance given in the eq. (11) and the correlation matrix C described at the end

of section 4.1.3. This speci�es P f . For each pair of Umkehr layers, an element of HP
f
H

T

corresponding to this pair is a weighted sum of forecast error covariances of pairs of model

layers, one intersecting the �rst Umkehr layer and the other intersecting the second Umkehr
layer. Each weight is the pressure di�erence in the intersection of an Umkehr layer with

a model layer multiplied by the conversion factor into Dobson units. The vector of SBUV

observed-minus-forecast residuals is assumed to have mean 0. The di�erence between SBUV
observed-minus-forecast sample covariance matrix and HP

f
H

T is interpreted as the SBUV

observation error covariance matrix. This matrix is not guaranteed to be positive de�nite

by construction. Thus, its positive de�niteness was veri�ed subsequently by showing that

all its eigenvalues are positive.

4.3 Observation operator

Let �(p) denote the ozone mixing ratio in an atmospheric column as a function of pressure
p. The partial column ozone between the levels with pressures p1 and p2 is

I(�; p1; p2) = 


Z p2

p1

�(p)dp; (24)

where 
 is the constant for conversion from units of pressure to Dobson units. For example,
I(�; 0; ps), where ps is the surface pressure, is the total column ozone. If pt is the pressure

at the top and pb is the pressure at the bottom of an Umkehr layer, then I(�; pt; pb) is the
partial column ozone in this Umkehr layer.

There are 29 hybrid levels in the ozone assimilation system and therefore the model pro�le is
given by a vector � of size 29. A discrete approximation of I(�; a; b) is given by the following
sum

I(�; p1; p2) = 


29X
k=1

�(k)4pk (25)

where4pk is the pressure increment of the intersection of the pressure interval corresponding

to the model layer k and the interval [p1; p2].

After the averaging procedure described in section 3, every TOMS observation is given at a

horizontal location of a model pro�le �. The observation operator for TOMS total column
ozone consists of evaluating I(�; 0; ps).

The observation operator for SBUV partial ozone columns consists of two parts. First is the

linear interpolation in longitude and latitude of the neighboring four model ozone mixing

ratio pro�les. A pro�le of ozone mixing ratio � at model levels and with the horizontal
location of the SBUV observation is obtained. Denote by pt the pressure at the top and by
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pb the pressure at the bottom of the Umkehr layer for which the SBUV measured the partial

ozone column. The second part of the observation operator is the evaluation of I(�; pt; pb).

5 Validation

5.1 Validation against TOMS and SBUV observations

One measure of the quality of the assimilation is how well the data assimilation system

predicts the observations being blended into the system. This allows us to evaluate how

consistent the observations are with our knowledge of the atmosphere as described by the

forecast model. In this section global synoptic analysis and forecast �elds are compared

with TOMS and SBUV observations. An example showing a partitioning of analyzed ozone
across the tropopause is included to illustrate the in
uence of the forecast model and the
assumptions used in the statistical analysis on the analyzed ozone.

An example of the analyzed total ozone �eld is given in the upper plate of Fig. 4 together

with a daily map of TOMS level 3 data on the same day. The analyzed ozone �eld is
synoptic and global, while TOMS needs 24 hours to obtain the coverage shown, and it does

not observe in the polar night region. There is close qualitative agreement between these

two �elds. Total ozone values are the highest in the northern high latitudes, lower in the
southern hemisphere, and the lowest in the tropics. Note that a transient feature of very
low ozone values over Europe is captured in both �elds. This feature is typical for the large
variability, of about 200 DU, around the circle of latitude 60Æ N.

In Figs. 5 and 6 a measure of di�erences between TOMS observations and model forecast of

total ozone is shown. The observed-minus-forecast residuals wo �Hwf (right hand side of
the eq. (7)) indicate how well are the observations predicted by the system. The evolution
of daily global root mean square (RMS) of TOMS observed-minus-forecast residuals in the

ozone system during the validation period is given in Fig. 5. There is a sharp drop in the

RMS over the �rst two days of the assimilation from about 30 (due to the initial condition)
to about 10 Dobson units. The RMS stays below 4% of the average total ozone, but there

is an increase of � 2 Dobson units during the validation period. In Fig. 6 the daily RMS
of TOMS observed-minus-forecast residuals in 2Æ degree latitude bands is shown. Most of

the increase in the RMS occurs at the northern middle and southern high latitudes. In the

northern middle latitudes, due to the decreasing polar night region, the coverage of TOMS
is increasing to include more of the dynamically active region with relatively high variability

in total ozone. In the southern high latitudes the variability of the total ozone �eld increased
during the month of January and consequently the RMS of observed-minus-forecast residuals

increased.

The quality of analyzed ozone pro�les is evaluated in a comparison with SBUV data. The
SBUV level 2 ozone mixing ratio product, given on pressure levels, is used in this comparison.
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For each synoptic time (0, 6, 12, 18 z) approximately half of the corresponding Umkehr layer

data (the observations in the three hours preceding the synoptic time) has been assimilated by

the system. The RMS di�erences between analysis and SBUV values over one day are shown

in Fig. 7 (solid curve). Also shown are the RMS di�erences between analysis and SBUV

for the system described in [25], which included a biased chemistry model. For the current

system the values are generally smaller. There are three main reasons for the improvements.

In the upper stratosphere the main cause is removal of the biased chemistry parameterization
from the forecast model. Below 60 hPa the improvements are due to the assimilation of the

additional SBUV observations from Umkehr layer 3. In addition, the global RMS di�erence

decreased at most levels due to assimilation of additional SBUV observations with high solar
zenith angle (increasing the SBUV data coverage by about 20Æ latitude in the northern high

latitudes).

Partitioning of the ozone across the tropopause is shown in Figure 8. Total ozone in the
tropical region measured by TOMS exhibits a distinct wave one feature [26], with the max-

imum in total ozone often over the Atlantic ocean and the minimum over the Paci�c ocean.
This feature was found to be limited to the tropospheric part of the column by Ziemke et
al. [31]. The monthly means of the analyzed ozone mixing ratio at 150 hPa and 50 hPa
are shown in Fig. 8. In the analyzed ozone �elds the wave one feature is indeed limited to

below 150 hPa (upper plate). The analyzed ozone �eld in the stratosphere has less zonal
variability as it can be seen in the �eld at 50 hPa (lower plate). However, note that the
shape of the ozone analysis at 50 hPa depends strongly on the assumptions used in the as-

similation system. It can be seen from the statistical analysis equations (7) and (8) that the
analysis �eld is formed using the forecast model, assimilated observations and speci�cation

of their error characteristics. Changes in either of these components results in changes of the

mean analyzed �eld at 50 hPa as it is illustrated by the following three experiments. In the
�rst experiment higher forecast error variances were used and thus more weight was given
to observations. In this experiment the maximum of the mean analyses is over the eastern
Atlantic. This maximum agrees with that of the SBUV observations in the Umkehr layer 4,

i.e. of the ozone column between 31.66 and 63.33 hPa. In another experiment parameterized
ozone production and loss rates were used as a part of the forecast model (as in [25]). The

resulting monthly mean analysis �eld is almost identical to the �eld shown in Fig. 8. The

variability in the ozone �eld at these altitudes is largely determined by advective rather than
chemical processes. In the last experiment the forecast model using parameterized chemistry

and transport was integrated without assimilating any observations. The resulting monthly

mean ozone �eld has a maximum over western and a minimum over eastern Paci�c. Thus,

the analyzed ozone �eld in the tropics at 50 hPa results as a combination of the in
uence of
dynamics (with a maximum over western Paci�c) and SBUV observations (with a maximum
over eastern Atlantic) according to the speci�cation of error covariances in the statistical

analysis scheme.
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5.2 Validation against independent observations

Comparison of the analysis �elds with standard independent observations that are not assim-

ilated is another common validation procedure. For example, statistics of their di�erences

can reveal biases due to input data that may not be apparent from observed-minus-forecast
residuals. Furthermore, in the ozone system the vertical resolution of the analysis �eld ex-

ceeds the vertical resolution of SBUV and TOMS observations. Thus, comparisons with

independent pro�le observations with high vertical resolution are important in evaluating

the quality of analyzed ozone pro�les.

Two sources of independent ozone pro�le observations are used in the validation: WMO

balloon-borne ozone sondes and HALOE (Halogen Occultation Experiment) on Upper At-
mosphere Research Satellite. Ozone sondes provide ozone pro�les in the troposphere and

lower to middle stratosphere. Sonde measurements have high vertical resolution, but sta-
tions are nonuniformly distributed (with the majority in northern middle to high latitudes)

and sonde launches are infrequent. Fewer than 400 pro�les are available from the WMO
database during our validation period and less than half of the sondes reached levels higher
than 7 hPa. All the available sonde pro�les were used in the following comparison, without
any quality control. Each sonde pro�le was interpolated to the analysis pressure levels (rang-

ing from 850 to 10 hPa) from the nearest measurements above and below each analysis level

using linear interpolation in the logarithm of pressure. The mean pro�les of the sondes and
the analysis are shown in the upper plate of Fig. 9 and they are generally in good agreement.

The analysis mean around 150 hPa is larger than sonde mean. A larger error at this altitude
is a likely consequence of two characteristic features: proximity of the tropopause with sharp
changes in the ozone pro�le and this being the highest altitude not covered by assimilated

SBUV pro�le observations. The RMS di�erence between sondes and analysis (lower plate of
Fig. 9) generally increases with altitude. The RMS is relatively large around 130 hPa, but
decreases around 85 hPa due to assimilation of the SBUV data from Umkehr layer 3, which
contains the pressure levels at 70, 85, 100 and 115 hPa.

We now digress from the statistical validation to show the ability of the system to reproduce

variability in the ozone �eld. This is illustrated by reproducing an event in which ozone �eld

di�ered signi�cantly from the climatological values. At the end of January 1992 subtropical
tropospheric air was transported into lower midlatitude stratosphere [30]. Low values of

total ozone are visible in Fig. 4 over Europe in analyzed �elds and TOMS observations. In
Fig. 10, lower stratospheric ozone pro�les over Hohenpeissenberg, Germany are shown. On
January 24, before the event occurred, the analyzed pro�le and ozone sonde measurements

have values typical for this latitude. After the event occurred, on January 29, there is a

very good agreement between sonde measurements and GEOS ozone DAS analysis, both
exhibiting unusually low ozone values.

Statistical validation of stratospheric and mesospheric parts of the pro�les is done using

independent HALOE measurements. From the middle of January to the end of February
1992 HALOE measured 651 pro�les at the sunrise between the latitudes 75S and 49N. Their

mean is in a close agreement with the mean of analysis pro�les and they are both shown in
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Fig. 11. Some of the disagreement is likely to be caused by biases in the SBUV observations

due to the aerosols. The aerosol layer formed by the eruption of Mt. Pinatubo reached

about 25 km altitude in the tropics during our validation period [29]. The e�ect of such

high altitude aerosol layer on SBUV is underestimation of ozone between 32 and 8 hPa and

overestimation between 63 and 32 hPa [28]. Similar biases are expected in the analyzed

ozone because our statistical analysis scheme does not account for biases in observations.

5.3 Validation of the forecast and observation error covariance

models

The analyzed ozone �elds were validated in the preceding two sections. In this section we
focus on the validation of the forecast and observation error covariance models implemented

in the ozone system using statistics of the realizations of observed-minus-forecast residuals.

The true state �t and the errors �f and �
o in equations (3) and (4) are unknown. However,

the observed-minus-forecast residuals

wo �Hwf = �
o �H�

f

are available. Under the assumptions that forecast error �f and observation error �o are un-

correlated Gaussian distributed with mean 0 and covariance matrices P f and R, respectively,
the observed-minus-forecast residuals wo �Hwf are Gaussian distributed with mean 0 and
covariance matrix HP

f
H

T +R. Let z be the random variable given by

z = (wo �Hwf)T (HP
f
H

T +R)�1(wo �Hwf) = xT (wo �Hwf )

where

x = (HP
f
H

T +R)�1(wo �Hwf)

is the solution of eq. (7). Under the above assumptions, z has �2 distribution with p degrees
of freedom. Its mean is p and its variance is 2p. Our samples are based on di�erent numbers
of observations, i.e. p is not constant, thus we consider two related variables whose moments

are independent of p. The mean of x = z=p is 1 and the variance of y = z=
p
p is 2. Denote

the number of samples by k. Each

zi = xi
T (wo

i �Hiw
f
i)

for i = 1; : : : ; k should be a realization of a random variable with �
2 distribution with pi

degrees of freedom. Let xi = zi=pi and yi = zi=
p
pi for i = 1; : : : ; k. Denote by �̂ the sample

mean of xi

�̂ =
1

k

kX
i=1

zi

pi
;

by v̂0 the sample variance of yi assuming the known mean
p
pi of yi

v̂0 =
1

k

kX
i=1

� zip
pi
�
p
pi

�2
=

1

k

kX
i=1

(zi � 1)2

pi
;
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and by v̂1 the sample variance of yi with respect to the estimated mean �̂
p
pi of yi

v̂1 =
1

k

kX
i=1

� zip
pi
� �̂

p
pi

�2
=

1

k

kX
i=1

(zi � �̂)2

pi
:

For p large and a random variable z with �
2 distribution with p degrees of freedom, the

distribution of h(z; p) =
p
2z �

p
2p can be approximated by the standard normal distribu-

tion. The relative frequency of samples for which h(zi; pi) 2 [�1; 1] and h(zi; pi) 2 [�2; 2]
are denoted by �1 and �2, respectively.

The computed values of variables �̂, v̂0, v̂1, �1 and �2 for the initial (a126) [25] and the

current version (a154) of GEOS ozone DAS are given in Table 2. The values of all the above

variables for the current system are closer to the values that they should be approximating,
some even by several orders of magnitude.

There is a number of reasons why the variances v̂0 and v̂1 are larger than 2. For example,
the aerosol layer from the eruption of Mt. Pinatubo volcano in Philippines on June 15, 1991
was in the stratosphere during our validation period. This caused a scan angle dependent

bias in TOMS total ozone on the order of 5 DU [2] and an altitude and solar zenith angle

dependent bias in SBUV ozone pro�les [28]. The errors in the forecast due to the neglected
photochemical processes are not modeled. These errors are expected to be larger at higher

model levels where photochemical processes have short time scales. The transport model
without chemistry is biased because it cannot maintain the absolute ozone peak in the tropics
around 10 hPa. The relative error of SBUV observations depends on the solar zenith angle

at which the measurements were done. However, the relative error standard deviation is
modeled in the ozone system by a constant for each SBUV Umkehr layer (see Table 1).

The �2 related diagnostic statistics given in Table 2 are important for evaluating error co-
variance models and the validity of probabilistic assumptions used in the statistical analysis.
However, while it is convenient to evaluate a complex system using several �2 related statis-

tics there is also a danger in oversimplifying as di�erent changes in covariance models can

result in similar changes in these statistics. For example, a change in covariance models

that attempts to account for one of the problems in error modeling listed in the previous
paragraph can introduce an imbalance between observation and forecast error models. This

change can result in a signi�cant temporary improvement of the �2 related statistics. But,
after more than a day, an overall degradation in performance can be seen using �

2 related

statistics and other validation metrics for analyzed �elds presented earlier in the paper.

6 Summary and conclusions

A description of a new three-dimensional global ozone data assimilation system and examples
from its validation were given. In this system the TOMS total ozone and SBUV partial ozone

pro�le observations are assimilated into an ozone transport model. A global physical space
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exp. �̂ v̂0 v̂1 �1 �2 k

1 2 2 68.26 95.44

a126 20.067 148557.016 72206.987 3.37 13.48 89

a154 1.519 142.098 67.665 12.09 23.08 91

Table 2: The values of sample statistics computed using data from the initial version (a126)
[25] and the current version (a154) of GEOS ozone DAS are given. All the statistics were

computed for the samples from noon on February 15 to noon on February 16, 1992. The

values that each statistics should approximate provided that assumptions leading to �
2

distribution were correct are given in the second row of this Table. Note that the assimilation

of SBUV data with the quality 
ag 1 increases the number of analysis times for which there

are data to assimilate, or equivalently the number of samples k.

based statistical analysis scheme is used to assimilate available data at every model time
step (15 minutes).

In the development of the ozone assimilation system system special attention was paid to the
speci�cation of forecast and observation error characteristics. These error characteristics de-
termine the relative contributions of forecast �eld and observations when they are combined

in the statistical analysis to form the analyzed ozone �eld.

Models for error characteristics and reasons for their choices were described. For example,
forecast error variance is modeled proportional to the ozone �eld. Unique models are used for

the forecast error correlations. A general procedure for generating anisotropic from isotropic
correlation models through a stretching mapping was given and successfully applied. The
choice of the stretching mapping is determined by the application. In the ozone system the

anisotropy and the mapping for horizontal forecast error correlations are determined by the
distribution of observations. The correlations are falling o� faster in the data dense than
in data sparse regions and directions. The resulting horizontal forecast error correlations
are anisotropic with longer correlation length in the zonal than in the meridional direction.

The degree of anisotropy is the largest in the tropics with the longest length scale in the

zonal (data sparse) direction. The maximum likelihood estimation of forecast error length
scales and a simpli�ed Kalman �lter experiment both support this choice of an anisotropic

correlation model. Vertical forecast error correlations are modeled using another anisotropic
function. In addition, this function is zero for grid points separated by more than 5 model

levels in order to limit computational burden in the statistical analysis.

The following examples from validation in winter 1992 period were presented. Statisti-

cal validation of analyzed �elds was done against SBUV and independent (HALOE and

ozonesondes) observations. The root-mean-square of TOMS observed-minus-forecast residu-
als is less than 4%. The ozone system was found to be able to reproduce variability in ozone

�elds. For example, the analyzed �elds were in an excellent agreement with independent

ozonesonde observations within a \minihole". The wave one feature in tropical analyzed

ozone is con�ned to the tropospheric part of the column, consistent with the vertical extent
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of this feature found by Ziemke et al. [31]. The accuracy of error covariance models was

evaluated using �
2 related statistics showing a large improvement in covariance modeling

compared to an initial version [25] of the system.

Thus, an ozone system was developed and it was found to perform well during the validation

period in the winter of 1992. The ozone �elds that are assimilated using this system are

available to scienti�c community in near-real-time since the launch of NASA's Terra satellite.
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Appendix

The function �, used in de�ning the vertical forecast error correlation function g, is a member
of the family of compactly supported correlation functions (depending on a parameter e)
constructed by Gaspari et al. [13] de�ned by

�(r) =

8>>>>>><>>>>>>:

�1(r) 0 � jrj < 1=2

�2(r) 1=2 � jrj < 1
�3(r) 1 � jrj < 3=2
�4(r) 3=2 � jrj < 2

0 2 � jrj;

(26)

where the even functions �1; : : : ; �4 are de�ned for r � 0 by

�1(r) = �
1

3d

�
48er4 � 48e2r4 + 60er3 � 9e+ 160e2r2 � 40er2 � 66e2

� 120e2r3 + 20r2 + 56e2r5 � 64er5 � 15r3 + 24r5 � 24r4 � 3
�

�2(r) =
1

12rd

�
� 120r2 � 96r5 + 32r6 � 4 + 48r + 29e� 42e2 + 80r3

+ 160e2r6 � 192er6 + 60r4 + 612e2r � 880er3 + 800e2r3

� 1080e2r2 + 780er2 � 210er � 384e2r5 + 480er5
�
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�3(r) = �
e

12rd

�
243 � 230e + 96er6 � 64r6 � 720r3 + 1620r2

� 1134r + 732er � 1320er2 + 240er4 + 288r5 � 384er5

� 240r4 + 800er3
�

�4(r) =
4e2

3rd

�
� 120r2 � 16 + 96r + 40r3 + 2r6 � 12r5 + 15r4

�
;

and d = 3e+ 22e2 + 1.
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Figure 1: Schematic diagram of the ozone data assimilation system.
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Figure 2: The ratio of the mean square di�erence between independent observations and

analysis over the mean of the observations is shown for HALOE and ozone sondes.
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Figure 3: The action of the mapping � in the plane y = 0 is illustrated. The sphere of radius

s (representing Earth's surface) is mapped to a surface consisting of a �nite cylinder and
two hemispheres.
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Figure 4: The analyzed total ozone �eld at noon (upper plate) and the daily TOMS level 3
data (lower plate) on February 15, 1992 are shown.
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Figure 5: The evolution of daily global RMS of TOMS observed-minus-forecast residuals in

the GEOS ozone DAS during the validation period in winter 1992 is shown.

Figure 6: The evolution of daily zonal RMS of TOMS observed-minus-forecast residuals in

the GEOS ozone DAS during the validation period in winter 1992 in shown.
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Figure 7: The RMS di�erence between SBUV observations and GEOS ozone DAS analyzed

�elds relative to the mean SBUVmeasurements for the current version (a154) and the system

described in [25] which included a biased chemistry model (a126) are shown for January 20,

1992.
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Figure 8: Mean January 1992 GEOS ozone DAS analyzed �elds are shown. At 150 hPa high

values are over Africa, the Indian Ocean and the southern Atlantic while low values are over
Paci�c (upper plate). Less of the zonal variability is present at 50 hPa (lower plate).

DAO ATBD / New Data / Ozone (�Stajner et al.) - 31



Figure 9: The mean of ozone sonde observations and analyzed �elds between December 15,

1991 and February 27, 1992 is shown in the upper plate. The RMS di�erence between ozone

sonde observations and analyzed �elds is shown in the lower plate.
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Figure 10: Partial pro�le of ozone sonde measurements and GEOS ozone DAS analyzed

ozone �elds at Hohenpeissenberg (47:8Æ lat., 11:02Æ lon.) before (Jan. 24, 1992) and during
(Jan. 29, 1992) the intrusion of the tropical tropospheric air are shown.
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Figure 11: The mean ozone measured by HALOE at sunrise and the analyzed ozone for the

period between January 15 and February 27, 1992 are shown.
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